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The F-Detector Revisited: An Improved Strategy for Signal Detection

at Seismic and Infrasound Arrays

by Stephen J. Arrowsmith, Rod Whitaker, Charles Katz, and Chris Hayward

Abstract This short article explores and extends the adaptive detection algorithm
recently developed by Arrowsmith, Whitaker, et al. (2008). In particular, this article
highlights its application for seismic data, compares results for colocated seismic and
infrasonic data, and assesses detector performance through comparison with analyst
picks. We assess the adaptive detector by generating receiver-operating characteristic
(ROC) curves, illustrating the trade-off between detection probability and false-alarm
probability, and comparing the results with the conventional F-detector. The results
show that the adaptive detector performs much better than the conventional detector
for both seismic and infrasound data by maintaining high detection probabilities while
significantly decreasing false-alarm probabilities, illustrating that correlated noise is
ubiquitous for both types of data. The effect of the adaptation window is illustrated
and shown to be especially important for infrasound data where diurnal variations in
ambient noise levels are pronounced. Awindow choice of 1 hr (i.e., significantly less
than 24 hr) is shown to be adequate for representing variations in ambient noise levels.

Introduction

Most people with some experience of data analysis can
identify signals from noise remarkably easily. The problem
of automating this process for handling large quantities of
data is more complex and requires one to establish criteria
(i.e., hypotheses) that can be tested numerically. Previous
studies have typically implemented the simple hypothesis
that noise is spatially uncorrelated between the individual
elements in a seismic or infrasound array. Signals are as-
sumed to arrive as plane waves and can therefore be aligned
via beamforming.

The difference between signal and noise depends on
one’s definition. In a practical monitoring perspective, the
user is typically interested in relatively high-amplitude
transient signals—not in low-amplitude continuous signals
(which may be associated with a wide range of natural and
anthropogenic sources). Under this scenario, the conven-
tional null hypothesis (i.e., noise is completely uncorrelated)
is inappropriate and commonly violated—leading to large
numbers of detections from correlated noise (referred to here
as clutter). Of course, if the source level of the transient
of interest is inherently low, or if it is distant from the re-
ceiver array, then the transient event can become submerged
into the low-level correlated clutter and be manifest simply as
a brief excursion in the amplitude level of the overall
ambient.

Historically, techniques employed to mitigate this prob-
lem have been somewhat ad-hoc, typically utilizing histor-

ical data at a given array to set detection thresholds that work
well in practice. However, in addition to the obvious statis-
tical limitations of this approach, such techniques cannot be
easily exported to new arrays—especially arrays with no re-
cording history. We therefore require a statistically robust
algorithm that satisfies the following three criteria: (1) mini-
mal need for manual tuning, (2) accounts for real ambi-
ent noise, and (3) ability to be applied operationally in near
real time.

Arrowsmith, Whitaker, et al. (2008) outline a simple
array-based detection algorithm that effectively satisfies all
three criteria, which they then implement into a network-
based infrasound-monitoring algorithm. In this article, we
apply the new detection algorithm to colocated seismic
and infrasonic array data from Pinedale, Wyoming. We com-
pare the results with conventional detectors by computing
receiver-operating characteristic (ROC) curves, allowing us
to directly evaluate detection and false-alarm probabilities
for the different methods. Finally, we comment on differ-
ences in the detector implementation for seismic and infra-
sound data.

Methodology

As outlined by Blandford (1974), the F-statistic is de-
fined as:
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where J is the number of sensors, xj�n� is the waveform am-
plitude of the nth sample of the mean-free time series from
sensor j, lj is the time-alignment lag obtained from beam-
forming, n0 is the start sample index for the processing in-
terval, and N is the number of samples in the processing
window. Shumway et al. (1999) showed that in the pres-
ence of correlated noise, the F-statistic is distributed as
cF2BT;2BT�N�1�, where B is the bandwidth of filtered data
in the processing window, T, N are the number of array ele-
ments, and c is given by:

c �
�
1� N

Ps

Pn

�
; (2)

with Ps

Pn
denoting the correlated-noise power to uncorrelated-

noise power ratio (Shumway et al., 1999). Ideally, the pro-
cessing window, T, should be the same as or similar to the
time duration of the transient signal, ΔT. In practice, this is
not always the case, and if we would like to detect every
signal present in the data we may need to process each re-
cord a few times using different processing time windows
(and frequency bands). Arrowsmith, Whitaker, et al. (2008)
showed how this theoretical framework could be imple-
mented into a practical network-monitoring algorithm for in-
frasound data. In essence, we can estimate c by fitting the
observed distribution of F-statistics in a given adaptive time
window (w) to the theoretical distribution (cF2BT;2BT�N�1�)
by finding the value of c that aligns the peaks of both dis-
tributions. We then apply a standard p-value threshold to find
detections with a specified statistical significance. A new
value of c is then computed for the next subsequent adaptive
time window (w), allowing for adaptive compensation of
temporally variable noise. We comment in detail on the
choice of w in the following.

Constructing ROC curves is a standard practice for as-
sessing detector performance (e.g., Johnson and Dudgeon,
1993). ROC curves allow us to evaluate the trade-off between
the detection probability (PD) and the false-alarm probability
(PF) for a range of detection thresholds. They also allow for
direct comparison between the performances of different de-
tectors, provided that all of the detectors are applied to the
same set of input processes.

For real datasets, ROC curves can only be estimated be-
cause we must make a priori estimates of signal start and end
times. In practice, this is very difficult and relies on the judg-
ment of an analyst. However, as outlined in the Introduction,
analyst picks are typically more reliable than automatic
picks. Thus, it is reasonable to use analyst picks as a priori
information to estimate ROC curves for automatic detection
algorithms. For a given set of analyst picks, we can estimate
PD and PF as follows:

PD � number of detected signals
total number of signals

;

PF � number of noise detections
total number of detection intervals during noise

:

(3)

Test Dataset

In this study we have chosen to use data from colocated
seismic and infrasound arrays in Pinedale, Wyoming (see the
Data and Resources section and Fig. 1). This unique dataset
allows us to directly compare detector performance for seis-
mic and infrasonic data. We have selected one full day of
data for this study: 6 November 2007 (Fig. 2). The choice
of day is influenced by a previous study (Arrowsmith, Hed-
lin, et al., 2008), which that found mining explosions from
the Powder River basin could be detected infrasonically at
Pinedale during the wintertime.

Results

Seismic and infrasonic data, shown in Figure 2, were
picked by an analyst (in the 1–5 Hz frequency band). A total
of 47 seismic events and 22 infrasound events were identi-
fied, for which start and end times were manually picked.
The data were also processed with two detection algorithms:
the previously described adaptive F-detector and the conven-
tional F-detector (which assumes purely uncorrelated noise).
In each case, we first apply a standard F-K analysis. An F-K
spectrum is computed for a moving time window, providing
the back azimuth and phase velocity of the maximum beam
as a function of time. For each time window, the detection
statistic (equation 1) is applied for the maximum beam (i.e.,
the values of lj in equation 1 are directly obtained from the
F-K analysis). Data were processed with the following pa-
rameters: time window is 10 sec, overlap is 50%, filter band
is 1–5 Hz, and slowness parameters are �40 to 40 sec=deg
(seismic) or �400 to 400 sec=deg (infrasound). For details
on the implementation of a standard F-K analysis, the reader
is referred to Rost and Thomas (2002). ROC curves for seis-
mic and infrasound data were generated using equation (3)
for the following p-value detection thresholds: 0.5, 0.6, 0.7,
0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, and
0.99 (Fig. 3). We experimented with varying the adaptive
time-window (w) results obtained for w � 1 hr and w �
24 hr that are shown in Figure 3.

An ideal detector would result in the following values:
PD � 1 and PF � 0 (labeled in Fig. 3). The degree to which
the ROC departs from the equality line (PD � PF), shown
by the dashed lines in Figure 3, measures the distinctiveness
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of the two models (H0 � noise and H1 � signal� noise).
Taking the results for w � 1 hr first, it is clear that the
adaptive detector performs much better than the conventional
detector for both seismic and infrasound data. While both
detectors have very high values for PD, the conventional
detector also has high values for PF, indicating that large
quantities of clutter are being detected. This is a direct
consequence of the fact that the null hypothesis (H0 �
uncorrelated noise) for the conventional detector is being
violated. In contrast, values of PF for the adaptive detector
are much lower (e.g., for seismic data, they are PF � 0:43,
PD � 1:0 for p � 0:5 and PF � 0:02, PD � 0:89 for
p � 0:99). Both seismic and infrasound results are very sim-
ilar for the case where w � 1 hr. For a given p value, the
corresponding values for PD and PF are comparable, demon-
strating that the algorithm provides similar results for inde-
pendent datasets at a given threshold and therefore requires
minimal tuning.

The results obtained for w � 24 hr are very similar for
the seismic data but quite different for the infrasound data.
For the infrasound data, PF > 0:7 for all adaptive detector
results, indicating that the adaptive feature is not adequately
compensating for the ambient correlated noise. The reason
for this is clear from Figure 2: infrasonic noise levels vary
significantly during the course of the day, with particularly
high levels of incoherent noise during early-midafternoon
(local time) due to solar-driven convection. Figure 4 illus-
trates the effect of this variation in noise on the calculated
F-distributions in two time intervals—04:00–08:00 coordi-
nated universal time (UTC) (late-evening local time) and

20:00–00:00 UTC (midafternoon local time). For the seismic
data, the F-distributions in both time intervals are very simi-
lar. In contrast, for the infrasound data, the F-statistics are
significantly higher in the evening than in the afternoon.
Strong, incoherent solar-driven turbulence swamps coher-
ent noise on the infrasound array, lowering the ambient
F-statistics.

Clearly, for infrasound data, it is important that w be set
significantly less than 24 hr in order to account for diurnal
variations in the ambient noise field. In contrast, for seismic
data this is less important, although it must be emphasized
that seismic stations at Pinedale Array are located in bore-
holes and are therefore less sensitive to diurnal variations
in the atmosphere. Of course, both type of sensors are subject
to regular time-dependent ambient variations due to cultural
activity in instances where the sensor arrays are proximate to
human enterprise, for example, highways, factories, develop-
ment infrastructure such as pumping stations and power-
plants, etc.

Discussion and Conclusions

The foremost criterion for any automatic detector is to
assess how successfully it can match human analyst picks.
Our goal is to develop a detector for finding transient, rela-
tively high-amplitude signals, which perform similarly to a
human analyst (effectively removing the need for a human
analyst in processing large quantities of data). As shown
in this article, conventional detectors, such as the standard
F-detector, do not provide this capability. The analysis per-
formed in this article provides a direct comparison between

Figure 1. Map of the Pinedale seismic (filled triangles) and infrasound (open triangles) arrays.
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human analyst picks and automatic picks for the adaptive
F-detector and for the conventional F-detector. Because this
analysis assumes that we know signal start and end times
a priori, it should be emphasized that, in this study, we
are only estimating the ROC curves. However, this analysis
confirms that the adaptive F-detector performs very similarly
to a human analyst, whereas the conventional F-detector
performs comparatively poorly for both seismic and infra-
sound data.

In the Introduction, we identified three additional cri-
teria of importance in developing our automated detection
algorithm. The first criterion, that our detection algorithm
require minimal tuning, is satisfied in two ways: (1) the re-
sults shown in Figure 3 demonstrate that for a typical range
of p-value thresholds used in hypothesis testing (i.e., 0.01–
0.05), the values of PD and PF are comparable (PD > 0:87,
PF < 0:15) for independent seismic and infrasound datasets
(assuming w is set appropriately); and (2) the detector adapts
to variable ambient noise, removing the need to manually

adjust thresholds in order to account for changes in noise.
The second criterion, that the algorithm can adapt to tempo-
rally variable noise, is shown to be satisfied if the adaptive
window length is set short enough for infrasound data in
order to avoid diurnal variations in noise levels. Finally,
although not specifically mentioned in the text, the third cri-
terion (that the algorithm can be applied operationally in near
real time) is satisfied. The adaptive F-detector requires mini-
mal additional processing in comparison with the conven-
tional F-detector.

Data and Resources

Seismic data used in this study can be obtained from the
IRIS Data Management Center at www.iris.edu (network
code: IM). Infrasound data used in this study were obtained

Figure 2. Seismic (top) and infrasonic (bottom) array data re-
corded at Pinedale on 6 November 2007. Each waveform is band-
pass filtered from 1 to 5 Hz. Amplitudes are normalized by the
maximum amplitude on each trace. Boxes enclosed by dashed lines
highlight the time windows used for computing F distributions
shown in Figure 4.

Figure 3. ROC curves for adaptive (stars) and conventional (cir-
cles) detectors for both infrasound (filled symbols) and seismic
(open symbols) data. The top panel is for a long-term window
(w) of 1 hr and the bottom panel is for w � 24 hr. The equality line
(PD � PF) is shown by a dashed line on each panel. The inset plots
show zooms on P (detection) from 0.85 to 1.
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as part of a temporary deployment run by Southern Metho-
dist University and are not freely available to the community.
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Figure 4. Distributions of raw F-statistics (from equation 1) for seismic (left column) and infrasonic (right column) data in two co-
ordinated universal time intervals: 04:00–08:00 (top row) and 20:00–00:00 (bottom row).
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