# Plotting Plotting a transform is easy using Matplotlib's `pcolormesh`. We'll use our chirp example from earlier. ```python plt.pcolormesh(T, F, abs(S)) ``` Let's plot something nicer, though. ```python N = len(c) C = np.abs(np.fft.fft(c, N) * sample_rate)[:N/2 + 1] * 2.0/N df = 1.0 / (N/sample_rate) f = df * np.arange(len(C)) dt = 1.0 / sample_rate fig = plt.figure(figsize=(15,7)) ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=2) ax1.plot(t, c) ax1.set_title('chirp') ax1.set_ylabel('amplitude') ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2) ax2.pcolormesh(T, F, abs(S)) ax2.set_title('s-transform, S(t,f)') ax2.set_xlabel('time [sec]') ax2.set_ylabel('frequency [Hz]') ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2) ax3.plot(abs(S.sum(axis=1))/(t[-1] - t[0]), F[:,0], 'r', label=r'$\sum S(t,f) \Delta t$') ax3.plot(C, f, '--k', label='FFT') ax3.set_title('S(t,f) vs FFT') ax3.set_xlabel('amplitude') plt.legend() plt.tight_layout() plt.draw() ``` ![chirp and FFT](data/chirp.png) ## Filter Plotting This example makes plots of advanced NIP-filtered seismic data. Please see the [filtering section](filtering.md) to read about advanced filtering using the Normalized Inner Product of S-transforms.